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Normal and tangential resistance coefficients are calculated for a rigid slender 
body close to a planar no-slip boundary or midway between and close to two such 
boundaries. The important length scale is found to be the separation distance 
from the boundaries, and the forces per unit length acting on the slender body 
are approximately constant along most of its length. Owing to the presence of 
the walls, the ratio of the normal and tangential resistance coefficients can be 
greater than 2, its maximum limiting value in the infinite-fluid case. Applications 
to the movements of flagellated micro-organisms are discussed. 

1. Introduction 
This paper studies low Reynolds number translational movements of a rigid 

straight slender body in close proximity to a single plane wall or two such walk. 
The object of this study is the development of analytical relationships between 
velocities of translation along principal body axes and average resistive forces 
per unit body length acting in response to those motions. Such information is of 
particular interest in describing the hydrodynamics of movement of flexible 
active slender bodies, such as the flagella and cilia of aquatic micro-organisms. 
There a useful hydrodynamical approach is to introduce the ‘resistive force’ 
approximation 

cf. Gray & Hancook (1955), Lighthill (1975, chap. 3) and Pironneau & Katz 
(1974). In (l.l),  (F) is the net force per unit length acting a t  a particular point 
along the axis of a slender body, v is the velocity of that point relative to the 
fluid at inSnity and the Ci are coefficients of proportionality, conveniently 
termed ‘resistance coefficients’; the i direction is along one of the three principal 
body axes at that point. Starting with (1.1) and a knowledge of the C., and 
invoking momentum conservation principles for the entire slender body as 

t Present d d r e s s  : Department of Mechanical Engineering, University of California, 
Berkeley. 

$ Present address : CSIRO Division of Mathematics and Statistics, Canberra, Australia. 

(4) = - C,vi (no summation convention); (1.1) 
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FIGURE 1. Simulation of a curved slender body by a contiguous 
succession of shorter straight slender bodies. 

FIGURE 2. Slender body near i d k i t e  plane wall(s). 

necessary, information regarding propulsive and fluid field velocities, rates of 
working and viscous bending moments can be obtained. 

The details of the shape of the slender body and its undulations are contained 
in the resistance coefficients Ci. Strictly speaking, these depend upon the position 
along the flagellum and time. Development of expressions for the Ci appropriate 
to  undulations of finiee amplitude is a difficult task indeed. The principal diffi- 
culty is the fact that the forces acting at any point along the body axis depend 
not just upon the movements of that point, but simultaneously upon the move- 
ments of all other points along the axis, a phenomenon commonly termed the 
‘neighbouring effect’. This difficulty is alleviated if only undulations of small 
amplitude are considered, so that the neighbouring effect is negligible. In  such 
a case it is instructive to view the slender body as a segmented contiguous assem- 
blage of short, rigid, straight slender bodies; see figure 1 .  If end effects on the 
overall body are neglected, then a single value of Ci can be used for all sub-bodies. 
It is this situation, then, which motivates our study. 

We consider a cylindrical body of radius r, and length 21 such that r, < 1. 
The body axis translates while remaining in a plane situated at a distance h 
from either a single infinite plane wall, or two such walls; see figure 2. In  all 
cases ro h Q 1. For a single wall, we represent the flow field by a distribution 
of appropriate singularities located along the body axis and its image line. 
Aspects of this problem have been studied numerically by Blake (1974), and 
his results will be of comparative interest here. In  the case of two walls, we 
represent the flow field using an application of the Faxen (1923) technique 
introduced by de Mestre (1973). 

2. Slender-body movements near a single plane wall 
In  this section we consider a slender body situated a distance h from a single 

stationary plane wall; cf. figure 2 .  The slender body may translate in the xl, xz 
or x3 direction, i.e. longitudinally, transversely in a plane parallel to the wall or 
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transversely in a plane normal to the wall, respectively. For such motions, it is 
convenient to represent the velocity field in the fluid using a distribution of 
appropriate singulwities along the centre-line of the body. Thus we can pose the 
following integral equation for the velocity u(x): 

where F(s) is the force per unit length acting on the body and G,,(x,s) is the 
Green's function appropriate to the geometry of the problem (and the no-slip 
boundary condition). Here 

where r = [(xl - s)2 + xi + x,"],, R = [(xl - s)2 + xi + (za + 2h)2]* and ,u, is the vis- 
cosity. The first term in square brackets in (2.2) represents a distribution of 
Stokeslets along the centre-line of the body, while the second square-bracketed 
term is the image system needed to satisfy the no-slip condition on the plane 
boundary; cf. Blake (1971) and Blake & Chwang (1974). This system consists 
of Stokeslets of equal magnitude but opposite sign to those on the body axis, 
Stokes doublets of strength 2h times that of the Stokeslets, and source doublets 
of strength 2h2 times the Stokeslet strength. In (2.2) we have omitted additional 
singularities as they are of higher order. 

We seek an approximate analytic solution to (2.1) appropriate to the restric- 
tions ro g h < I and the boundary condition u = U' on r = ro. Asymptotic 
approaches to the solution of this equation, primarily for an isolated slender 
body, have received considerable attention in recent years; cf. Tillet (1970), 
Batchelor (1970) and Cox (1970). We shall briefly outline our approach; for 
more details of the general problem the reader is referred to the above references. 
We wish to evaluate (2.1) on the surface of the slender body, which in cylindrical 
co-ordinates is (xl,~o,O). Noting that (2.1) is singular in the limit r,,-+O, we 
conclude that the major contribution to the integral occurs in the vicinity of 
the point s = xl. Thence we rewrite (2.1) as 

1 

8)  = E;czl)j-lGij(x, 4 ds+ Gij(x, s) [F,W - [.2Pj(41 ds, (2-3) 

where now r = [(q - s ) ~  + ri]* and R = [(xl - s ) ~  + r: + 4r0h sin 0 + 4h2]). Since 
we are interested here in quantifying the wall effect, we shall obtain an approxi- 
mate solution to (2.3) by considering only the first term on the right-hand side. 
Once the magnitude and general analytic nature of the effect are known, a 
more sophisticated asymptotic expansion of the entire problem can follow. We 
note that, if Fi(xl) is approximately constant along most of the length of the 
slender body, then our expressions for the resistance coefficients will be reason- 
ably accurate. This is not, in fact, the case for a slender body translating in an 
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infhite fluid. Thus it remains for us to evaluate the integral of the Green's 
function along the body. For convenience, we shall write this integral as the 
sum I,.j + qj, where Iij is the contribution from the singularities on the body 
axis and Jij is due to the images. Thence 

%@1,@ = (q(%)/8v4 (Iij +&I. (2.4) 

The integrals Iij are familiar from the theory of isolated slender bodies, and are 
simplified by applying the slenderness limit roll < 1. For example, 

the notion being that contributions from points near the end points xl = + Z  
are less significant, and can be neglected at  this level of approximation. In  
previous asymptotic expansions for the infinite-fluid case, it  has been common 
to expand the logarithm in (2.5) into 21n (2Z/r,,) +In [l - ( X ~ / Z ) ~ ] ,  and to take as a 
first approximation the first of these terms. It is not necessary, however, for us 
to do this here, as the images in the wall will provide a convenient cancellation. 
The following approximate values are thus obtained: 

I~, = = 0, I ~ ,  = I , ~  = sin28, I~, = I,~ = 0. J 
The terms in cos 219 and sin 28 represent variations around the cross-section of 
the body and can be removed either by averaging around that cross-section, or 
by introducing source doublets of appropriate strengths along the centre-line 
of the body. Note that such doublets do not significantly influence the flow 
field (and therefore the boundary conditions) at the wall, provided that ro/h < 1. 
Consequently their presence does not necessitate inclusion of any additional 
image singularities. 

The mathematical procedure for obtaining the Jij is very similar to that for 
the &, i.e. the limits ro < h < Z are applied to the integrals. It is instructive to 
decompose the results into the separate contributions of the image Stokeslets, 
Stokes doublets and source doublets; see table 1. For i # j, Jij = 0 to this order 
of approximation. The flow field due to the image system does not vary around 
the cross-section of the body. A physical discussion of the separate effects of the 
image singularities is contained in Lighthill (1975, chap. 7). 

We can now evaluate the net forces per unit length acting on the body owing 
to separate translations in the xl, x2,  and x, directions. In partioular, addition 
of the results in (2.6) and table 1 indicates that to this order of approximation 
the local force per unit length is constant along the body, and is therefore equal 
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Stokeslets Stokes doublets Source doublets 

Jll - 2 In [ ( P - 4 p a ) l f  2 0 0 
J,, - In [(P-z?)/ha] - 2  1 
JS3 - In [(la - z3/ha] - 2 - 2  1 

TABLE 1 

to the average force. The results here are then conveniently expressed in terms 
of resistance coefficients C, = Sn,u,/(4. +&) [cf. ( l . l ) ]  as 

2v c - 4np c - 47v c1 = 
In (2h/r0)’ - In (2h/r0)’ - In (2h/r0) - 1’ 

3. Slender-body movements midway between two plane walls 
In this section we consider a slender body whose centre-line remains in a 

plane a distance h from stationary plane walls above and below it; cf. figure 2.  
The body may translate in the x1 or x2 direction, i.e. either longitudinally or 
transversely parallel to the walls. Here it is convenient to study the flow field 
by employing the technique introduced by Faxen (1923;  see also Happel & 
Brenner 1965, pp. 323-324) in connexion with a sphere falling between two 
parallel walls. The technique develops a sum of integral expressions for the 
velocity field which are appropriate to the solid boundaries present. However a 
straightforward physical interpretation, such as that in Q 2,  is not possible. The 
Fax& method has been employed by de Mestre (1973) to study the slender-body 
movements mentioned above in the case where h > 1. Our analysis proceeds from 
the stage in de Mestre’s analysis where an assumption regarding the magnitude 
of h becomes necessary. In that analysis a relation is developed between the 
velocity U2 of transverse translation by the body and the transverse force 
P2(s) per unit length, i.e. the Stokeslet strength, acting on the body. This relation 
can be written as 

x exp [{(axl - as +prosin S)] Q(a, /3, x3) F2(s) . (3-1) 

It proves necessary to use the complete expression for G(a, p, x3) ,  which can be 
derived from de Mestre’s analysis as 

1 

2 
k(e2kh + I )  

233/?2h(e2Wl - 1 )  
k(eZkh + 1) (e-2kh + 4kh- e2kh) 

2 

- - 2/Ph(e2kh - khe2kh - 1 - kh) 
k2(e2kh + 1) (e-2kh + 4kh - e2”) 

G(a, ,8, x3) = e-kxa 

P2(1 +k%) + 

+ ks(e2kh + 1) 

+ekxa(k  2 (e %* + 1) ( e - s h  + 4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4. - eSh) - k(eakh + 1) 

4- ks(e2kh+ 1 )  + k(e2kh- 1)(e-2kh+4kh-e2kh))’ 

- 2/3%( e2kh - kh e2kh - 1 - kh) 

(3 .2)  
P2(1 - kxs) 2 ~ , , 8 2 h ( e 2 ~ ~  - 1) 
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with k = (a2++P2)*. Now (3.1) may be regarded as the counterpart here of the 
transverse component of (2.1). Accordingly, we can consider a lowest-order 
approximate simplification of (3 .1)  by effectively taking P2(s) 1: F2(x1) and 
writing i t  as a factor outside the integrands. The 8 dependence inherent in the 
presence of G(a,B,x,) in the second integrand of (3 .1)  is analogously a higher- 
order effect. It can be removed by expanding G(a, /3,z3) in a Taylor series about 
x3 = 0 and observing that 

G(a,  B, 3%) = G(a, B, 0) + O(ro/W 
is a sufficient approximation here. The 8 dependence in the first integral is 
removed as in 3 2 .  Invoking slenderness considerations as before, it follows that 

Note that (3 .3 )  was obtained by de Mestre in the limit of large separation h B 1. 
Now, integrating with respect to x1 along the body to obtain an average force 
per unit length, we obtain 

with a = k cos4, b = ksin4, K = kh and 

4K(e2"- Ke2"- 1 - K )  
H ( K $ )  = - 4-sin2$ 2- ' ( [ eca+4K-e2" 

The procedure for the case of longitudinal translation in the x1 direction is 
analogous. There we obtain 

It remains for us to obtain analytical approximations for the final integrals in 
(3 .4 )  and (3.6), which we term respectively WJh) and Wl(h), with h = Z/h. 

In  (3 .4 )  let 6 = cos 4 and in (3 .6)  let 6 = sin $. Then 

where 
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Starting from this form, we obtain in the appendix the following approxi- 
mate expressions for W, and W,: 

W, = 21n(l/h)+2{ln(2m)-A-~+$,[f1,1]}+O(h/Z)~, (3.11) 

W, = 2 In + 2(1n (2m) - A  + 1 +$,[fl,2]) + O(h/Z)+, (3.12) 

where 

and 

A = jomlyJl(v)dv = - 0-27036 

(3.13) 

Jl(v) is the first-order ordinary Bessel function of the second kind. Here m is 
any positive number; for the functions fl,j it may readily be shown that g,,[f] 
exists and that lnm +$,[f] is independent of rtz. The latter has been evaluated 
numerically for the functions of interest here. 

Returning to (3.4) and (3.6), the final approximate expressions for the resis- 
tance coefficients C, and C, can be written as 

C -  2 v  C -  47.w (3.14), (3.15) - In (2h/r0) - 0.453’ - In (2h/r0) - 1.609’ 

4. Discussion 
Some comments are warranted on the accuracy of our approximate solutions. 

In  the theory of isolated slender bodies, retention of only the first term in (2.3) is 
tantamount to accepting errors O(ln (2Z/rO))-2. The slenderness approximations 
used in obtaining Iij are correct to O(ro/l) ,  and are thus within the above ap- 
proximation. When a nearby wall is present, however, (2.7) indicate that the 
resistance coefficients become O(ln (2h/r0))-l, with errors of higher order in 
approximating (2.3). Errors incurred in obtaining & are no worse than O(ro/h), 
and are thus acceptable. Indeed, when h/l< 1, asymptotic expansions in 
powers of In (2h/ro)-l are suggested. 

Very near a wall, then, the separation distance h, rather than the body 
length 21, becomes the important length scale. We may presume that, in the 
presence of two walls, errors of comparable magnitude arise in the development 
of (3.4) and (3.6). As indicated in the appendix, our asymptotic calculation of 
the integrals W, and W,, which occur in (3.4) and (3.6), is correct to O(r,/h)*, 
and is therefore acceptable. 

It is of interest to compare our approximate analytic results (2.7) for C,, C, 
and C, with the numerical computations of Blake (1974). He presented two 
approaches. The first is similar to that of Batchelor (1970), with the addition 
of an O(ln 21/r0)-2 iterative correction to the contribution of the body Stokeslets 
(though not the image system). Consequently there is a slight x1 dependence in 
the ratios &/.C$, apart from the arguably neglectable singularities a t  the ends of 
the body x1 = & 1. As was indicated in Blake (1974), this expansion approach is 
not suitable when a slender body becomes close to a plane boundary, particu- 
larly for motion towards the boundary. For h/l = 0.1, however, these ratios are 
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GIIP C2lP GIP 
Blake: partial numericad solution 2.183 4.093 4-366 
Blake : complete numerical solution - 4.912 8-868 
Present work 2.729 5.458 9-647 

TABLE 2 

5 

4 

y5 3 

2 

1 

One walk normal motion 

One wall: parallel motion 
J 

Range of likely results in infinite fluid 

I I I I I 1 1 I I 

1 20 30 40 50 60 70 80 90 100 

W - 0  

FIGURE 3. Dependence of y, = C,/C, (j = 2, 3) upon separation distance h;  
ro is the flagellum radius. 

invariant along most of the body, and suitable for use in computing effective 
resistance coefficients. As a second approach, Blake solved the integral equation 
(2.1) directly, via a matrix inversion technique. Transverse movements in the 
x2 or x8 direction were considered. In  the limit of small clearance, say h/Z = 0.1, 
these latter results indicated significantly higher resistive forces than did the 
first approach. Interestingly, comparison of effective resistance coefficients with 
our analytical results indicates much better agreement with the seoond approach. 
For example, letting roll = 0.02 and h/Z = 0-1, we obtain the results in table 2. 

With regard to the self-propulsion of flagellated micro-organisms, the para- 
meters of primary interest are the ratios of transverse and longitudinal re- 
sistance coefficients, yl = C2/C1 and yz = CJC1. Of course, use of yB here to  
characterize flagellar undulations in a plane normal to a wall is a considerable 
simplification since it requires that h be effectively the same for all points on the 
body centre-line. Our inclusion of y2 here is nevertheless consistent with the 
small amplitude restrictions in the entire analysis, and enables us to compare 
the relative importance of undulations normal and parallel to a wall. In  figure 3 
we have plotted values of y1 and y2 for motion near a single wall and values of y1 
for motion midway between two nearby walls. Note that in the single-wall case 
y1 exactly equals 2 while y2 > 2, but that y1 > 2 in the case of two walls. Our 
current understanding of the hydrodynamics of the propulsion of isolated flagella 
suggests a value of y1 in the neighbourhood of 1.8. Thus the presence of nearby 
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walls has a significant influence on propulsive velocity, which, roughly speaking, 
increases as y. Since the coefficients themselves increase as h decreases, the rate 
of working and the distribution of the viscous bending moments also increase 
in magnitude as a wall is approached. Quantitative details of these responses to 
a wall are contained in Katz & Blake (1974). When the wall separation diminishes 
to the order of a body length, the wall effect becomes significant. 

It is appropriate to remark again in closing that our results can only be strictly 
applied to  slender-body undulations of small amplitude. In fact all derivations 
of expressions for resistance coefficients to date are based upon this assumption, 
even though they have often been applied to undulations of finite amplitude. 
The physiological application of all these small amplitude theories, while 
valuable, is nonetheless restricted. Indeed, our understanding of flagellar and 
ciliary movement and function has reached a level where finite amplitude 
theories are needed. We hope that they will be forthcoming. 

DFK acknowledges the support of a Population Council postdoctoral 
fellowship and an NIH research grant (HD8018). SLP-F participated in this 
study under the auspices of the C N R ,  Italy. 

Appendix 1. Asymptotic evaluation of %(A) and W,(h) for h % i 

Let us rewrite (3.7) as 
Preliminary remarks 

K(4 = W1,1(4 -4w*(4, %(A) = Wl,,(A)+W*(h), (A 1) 

We note that the functions f1,2(K), f2 .2(K)  and fl,l(K), given in (3.8)-(3.10), 
satisfy the conditions 

f ( K )  = 1 + O(K) for K+O+, (A 4) 

Lettingf(K) = 1 +R$(K),  for any m > 0 

However, note that the integrals 

do not exist. Note also that the functions f (R)  and $(K)  are bounded for 
O < K < m .  
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In  the asymptotic estimates below, we use the following results: 

Evaluation of w* 
From (A 3) and (A 8) we have 

f2,AK) dK* (A 14) 
1 -4(2Kh) 

K2 
w*(h) = ;Io 

Since f 2 , @ )  = 1+k$2,2(k), both f2,2 and y?2,2 satisfy the conditions (A 4)-(A 7). 
Then, using (A lo), 

(A 15) K 

Now, since f 2 , 2  and $2,2 me bounded on 0 < K 6 co, for h > 0 and any given 
m > 0 we have 

= O ( k l  In A )  + O(h-l), 

w*(h) = 2 + O(h-lln A) .  

(A 16) 

(A 17) 

where we have used (A 10)-(A 12). Thence (A 15) and (A 16) yield 

Evaluation of wl,i ( i  = 1,2) 
Using (A 9), (A 10) can be rewritten as 
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Wl,i = w?(A; m) + w$(h; rn) + W q A ;  m), 
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Now consider 
(A 19) 

where 

and m is an assigned positive parameter. Using (A 7)-(A 12), 

Using (A 6), (A 12) and the boundedness of 

Here, using (A 

The remaining two terms in (A 25) can be expressed as 

Combining (A 23), (A 24) and (A 28), we finally obtain 

+w,,(A) =lnh+ln2m-A+~m[fi , i]+O(A-~),  i = 1,2,  (A29) 

where 
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The m independence of (A 29) may readily be demonstrated by differentiation 
with respect t o  m. It does not, however, appear to be possible to express the 
result in a functional form independent of m. This is a consequence of the fact 
that the integrals 

do not exist. 

Evaluation of W, and W, 
Inserting (A 27) and (A 30) into (A l), we find 
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